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Abstract—Modeling of the human aging process was performed based on the relationship between overall via-
bility and the processes of growth and self-renewal of tissues, which is presumably regulated by the centers of
the vegetative brain. The presence of two regulatory centers, which stimulate and inhibit such growth, as well
as the spontaneous degradation of the cells in those centers at different rates, allowed us to simulate the peri-
ods of growth, retardation, and decrease of the rate of the growth or self-renewal of tissues. The resulting
curve corresponds to the real entire mortality intensity curve for populations, which is known to best describe
the growth and aging processes. Such a correspondence between the model and the mortality curve, which is
usually described by the Gompertz formula only for the middle part of the curve, was obtained for the first
time. The model complies with the regulatory theory of aging and connects aging processes with the processes
of regulation of growth and tissue self-renewal.
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Researchers have proposed many models of aging;
thus far, the best and most practically used is the phe-
nomenological model of B. Gompertz (B. Gompertz,
1825), which describes the age-related mortality of
populations [1]. However, this model describes only
middle-aged mortality (a monotonous exponential
increase in mortality) and is not capable of modeling
the initial and final forms of the real mortality curve of
humans and mammals. It also does not have a clear
biological meaning, i.e., associations with specific
physiological mechanisms.

The aim of this work was to build an aging model
that describes all the stages of the real human mortal-
ity curve and connects aging and mortality with the
main life processes, that is, growth and self-renewal of
tissues.

METHODS
We used differential equations for this modeling,

which were simulated on a computer and displayed in
graph form constructed in Excel.

To compare the model with the real mortality
curve, optimal countries were chosen during the peri-
ods of the most favorable historical conditions, in
order to minimize the influence of external factors on
the mortality curve. Mortality rates were calculated.
Mortality data for different countries were taken on
the public website http://www.mortality.org, which

reflects the dynamics of mortality for 40 countries over
two and a half centuries. We used the mortality rate,
since this indicator is considered by gerontologists as
being optimal for describing changes in the aging rate
with age.

RESULTS AND DISCUSSION

The model is based on the concepts of the relation-
ship of aging with the processes of growth and devel-
opment and self-renewal of its tissues as the main force
of vitality opposing aging [2–7]; it combines the the-
ory of stochastic damage and regulatory theory of
aging [2–4, 6–14].

The model is based on the following simplest
assumptions, which have clear biological meaning:

—the growth and self-renewal of the body is con-
trolled by two types of interacting regulatory cells
(stimulatory and inhibitory, such as the central regula-
tion of hormones by the hypothalamus and pituitary
gland) with different rates of spontaneous death;

—vitality is equivalent to the rate of tissue self-
renewal due to mechanisms of cell growth and divi-
sion;

—mortality is considered as the inverse of vitality.
Based on these assumptions, it is possible to

explain both the regulation of the growth of a living
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Fig. 1. A model of regulatory aging as age-related tissue
dystrophy with a change in cell growth regulation. The y-
axis represents parameter values, the x-axis is the time in
arbitrary units: (1) number of stimulator cells (h) for the
initial h = 100 with the spontaneous death of 10% of the
cells per time unit; (2) number of inhibitor cells (s) for the
initial s =100 with the spontaneous death of 13% cells per
time unit; (3) the content of the final regulatory F factor
(F = h – s), with the proportionality coefficient 5F.
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Fig. 2. A mathematical model of the regulatory theory of
mortality and the actual intensity of mortality in Australia
(1940). The x-axis is the time in years, the y-axis is the
intensity of mortality (on a logarithmic scale): (1) the esti-
mated mortality rate according to the proposed model with
the coefficients indicated in the text; (2) the real mortality
rate (data are presented on the website http://www.mortal-
ity.org, 11/15/2019); (3) graph according to the Gompertz
formula: m = 7.95E–4 + 6.13E–5exp(9.37E–2t).
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system and the cessation of this development at the
correct time with subsequent spontaneous aging.

Given the above assumptions, the age-related
dynamics of regulatory cells can be described by a sys-
tem of two simple linear differential equations used to
describe any stochastic decay processes of elements
(for example, radioactive decay occurs according to
the same fundamental mechanisms and general causes
and laws):

(1)

where h and s are the numbers of stimulatory (helper)
and inhibitory (suppressor) cells, accordingly and kh
and ks are coefficients of probabilistic death intensity
for the corresponding cell types.

Based on the simplest assumption that the produc-
tion of a certain final regulatory factor F in the body is
proportional to the difference between the number of
stimulatory and inhibitory cells, we obtain the ratio:

(2)

where kf is a coefficient and C is a constant.
If we consider the regulatory factor as the main fac-

tor of viability that provides the integral functioning of
the body as a system, in particular, tissue regeneration,
then we can assume that the F value characterizes the
viability of the organism and in the simplest case is
proportional to it. Then, for mortality, as for the recip-
rocal of vitality, we obtain the expression:

(3)

,
,

h

s

dh dt k h
ds dt k s

= −
= −

( ) ,fF k h s C= − +

(1 ),mm k F=
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where km is a proportionality coefficient.
For the practical purposes of computer simulation,

the following quantitative coefficients were used:
m = 1/(F × 375 + C); with C = 1; kh = 0.1; ks = 0.13.
To consider mortality from external causes that
always affect the mortality rate of the population, a
constant A, which is 0.0007 for the selected country,
was added.

If we assume that inhibitory cells are dying faster
with age (their function is exhausted by the period of
development: their death during the period of rapid
growth of the body, when the tissue mass increases by
more than an order of magnitude in comparison with
the body weight at birth, serves to inhibit stimulatory
effects), then the obtained equations can provide the
dynamics of the modeled variables and show very
good qualitative agreement with the real human mor-
tality curve (Figs. 1 and 2).

Unlike the first purely stochastic mechanism of death
of viable elements of the body as a whole, which allows
modeling only the middle part of the mortality curve
using the Gompertz equation, this model reflects all
parts of the true mortality curve: a high initial mortality
rate with a subsequent decrease and some minimum
during the growth period, a subsequent exponential
increase in mortality during the main period of life, and a
slight decrease in the oldest ages.

To compare the model with the real mortality
curve, several countries were selected during periods
of relatively favorable historical conditions (Australia,
Denmark, Canada, the Netherlands and others in
1910–1940, as well as in 1950). Figure 2 shows, as an
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example, graphs for Australia (1940): a real graph of
the mortality rate, a calculated graph using the
Gompertz formula (which deviates from the real graph
in the initial and final parts), and a calculated graph
according to our formula, which matches the real
curve in the best way in all age intervals (correlation
coefficient r = 0.999).

The qualitative correspondence of the model with
the actual demographic curves of mortality intensity is
the result of modeling; it is adequate to the task, which
is primarily biological. The real morphological sub-
strate (parameters h and s cells) of the described
mechanism may be regulatory non-dividing hypotha-
lamic cells that produce tissue growth regulation fac-
tors; for peripheral mechanisms, this may be various
somatic cells that grow and self-renew via division.

Some mechanisms of somatic cell growth regula-
tion can play a special role: some types of T-lympho-
cytes regulate growth of somatic cells rather than
immunity; these, in our opinion, can constitute a sep-
arate special immune system for controlling somatic
cell growth [2–4] and their age-related immunodefi-
ciency may underlie the immune theory of aging [2].

All this may indicate the decisive role of regulatory
processes for human aging. The long-known effects of
hypophysectomy on age-related involution of the thy-
mus [15] and the developed methods of transplanta-
tion of cerebral embryonic tissue [5] allow one to
influence the restoration of depleted regulatory pro-
grams in old animals. One alternative is methods of
pharmacological or physiotherapeutic activation of
the corresponding nuclei of the hypothalamus, as well
as the creation of new functional regulatory centers
and pacemakers, including using (auto) psychothera-
peutic techniques, and hypnosis. At the level of
peripheral mechanisms, the most promising ones are
immunopharmacological agents that affect lympho-
cytes, which are somatic cell growth regulators, as well
as growth factors isolated from the blood of young
growing animals; the number of such factors decreases
markedly with age [2, 16].

CONCLUSIONS

A mathematical model of the regulatory mecha-
nism of aging has been developed, with a description
of the entire human mortality curve and a clear biolog-
ical interpretation related to the concept of aging as a
stage of growth and development. The model is based
on the interaction of stimulatory and inhibitory types
of autonomic centers of regulation of brain regulatory
cells that influence the growth of tissues of the brain,
with different rates of spontaneous death, which
allows us to simulate the periods of growth, its com-
pletion, and the aging process. Mortality is considered
as the inverse of viability and viability is assumed to be
proportional to the rate of cell growth as the basis for
tissue self-renewal.

For the first time, the proposed regulatory aging
model allows us to describe the characteristic changes
in the initial, middle, and final parts of the human
mortality curve simultaneously, which coincide with
the real picture, and can be physiologically inter-
preted.

The model indicates the possible important role of
regulatory mechanisms of reducin tissue self-renewal
(cell division) with age during the aging of humans and
animals.

Since regulatory influences, unlike stochastic
mechanisms, are easily amenable to external control
influences, this opens up fundamentally new possibil-
ities for producing a radical effect on the aging of
humans and mammals.
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